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Abstract. The CESTAC method and its implementation known as CADNA
software have been created to estimate the accuracy of the solution of real
life problems when these solutions are obtained from numerical methods
implemented on a computer. The method takes into account uncertain-
ties on data and round-off errors. On another hand a theoretical model
for this method in which operands are gaussian variables called stochas-
tic numbers has been developed. In this paper numerical examples based
on the Lagrange polynomial interpolation and polynomial computation
have been constructed in order to demonstrate the consistency between
the CESTAC method and the theory of stochastic numbers. Comparisons
with the interval approach are visualized.

1 Introduction

The CESTAC method is an approach to deal with numerical problems involv-
ing uncertainties. It has been created to estimate the accuracy of the solution
of real life problems when these solutions are obtained from numerical meth-
ods implemented on a computer. Such applications to real life problems can be
found in [4], [6], [10] and [11]. This method is of Monte-Carlo-type and consists
in performing each arithmetic operation several times using an arithmetic with
a random rounding mode, see [2], [12], [13]. In other words, real numbers are
considered as random values with some prescribed probabilities. In the simplest
case one considers gaussian distributed random values, so-called stochastic num-
bers. Stochastic numbers possess only two probability parameters: mean value
and standard deviation, and allow for simple arithmetic operations over them.
Working with them can be considered as a particular case of granular computing
in the same way as it has been done for intervals [9]. The difference is that here,
intervals are confidence intervals and the operations on them are also different.
The classical operations on gaussian continuous functions is called Stochastic
Arithmetic or more precisely Continuous Stochastic Arithmetic (CSA).

In the CESTAC method a stochastic number is represented by several, say k,
samples xj , j = 1, ..., k, representing a given number x. The operations on these
samples are those of the computer in use followed by a random rounding. The
samples are randomly generated in a known confidence interval. The mean value



x is the best approximation of the exact value x and the number of significant
digits on x is computed by:

Cx = log10

(√
k |x|

σ τη

)
, (1)

wherein
x =

1
k

k∑
j=1

xj , σ2 =
1

k − 1

k∑
j=1

(xj − x)2

and τη is the value of the Student distribution for k−1 degrees of freedom and a
probability level 0.95. This type of computation on samples approximating the
same value is called Discrete Stochastic Arithmetic (DSA).

Operations on stochastic numbers are used as a model for operations on
imprecise numbers, i. e. real numbers containing an unknown error, which is
supposed to be centered gaussian with a known standard deviation. Some fun-
damental properties of stochastic numbers are considered in [3], [14].

This work is part of a more general one, which consists in studying the
algebraic structures induced by the operations on stochastic numbers in order
to provide a good algebraic understanding of the performance of the CESTAC
method [1], [7], [8].

The operations addition and multiplication by scalars are well-defined for
stochastic numbers and their properties have been studied in some detail. More
specifically, it has been shown that the set of stochastic numbers is a commuta-
tive monoid with cancelation law in relation to addition. The operator multipli-
cation by −1 (negation) is an automorphism and involution. These properties
imply a number of interesting consequences, see, e. g. [7], [8].

In the sequel we first briefly present some algebraic properties of the system of
stochastic numbers with respect to the arithmetic operations addition, negation,
multiplication by scalars, multiplication between two stochastic numbers and
the relation inclusion. This theoretical results are the bases for the numerical
experiments presented in the second part of the paper.

2 Stochastic Arithmetic Theory (SAT) approach

A stochastic number a is written in the form a = (a′; a′′). The first component
a′ is interpreted as mean value, and the second component a′′ is the standard
deviation. A stochastic number of the form (a′; 0) has zero standard deviation
and represents a (pure) mean value, whereas a stochastic number of the form
(0; a′′) has zero mean value and represents a (pure) standard deviation. In this
work we shall always assume a′′ ≥ 0; however, in some cases it is convenient
to consider negative standard deviations. Denote by S the set of all stochastic
numbers, S = {(a′; a′′) | a′ ∈ R, a′′ ∈ R

+}.
Linear operations. For two stochastic numbers (m1; s1), (m2; s2), s1, s2 ≥

0, we define addition by

(m1; s1) + (m2; s2)
def
= (m1 + m2;

√
s2
1 + s2

2), (2)



Multiplication by real scalars γ ∈ R is defined by:

γ ∗ (m1; s1)
def
= (γm1; |γ|s1). (3)

In particular multiplication by −1 (negation) is

−1 ∗ (m1; s1) = (−m1; s1), (4)

and subtraction of (m1; s1), (m2; s2) is:

(m1; s1) − (m2; s2)
def
= (m1; s1) + (−1) ∗ (m2; s2) = (m1 − m2;

√
s2
1 + s2

2). (5)

Symmetric stochastic numbers. A symmetric (centered) stochastic num-
ber has the form (0; s), s ∈ R. The arithmetic operations (2)–(5) show that
mean values subordinate to familiar real arithmetic whereas standard deviations
induce a special arithmetic structure that deviates from the rules of a linear
space. If we denote addition of standard deviations defined by (2) by “⊕” and
multiplication by scalars by “∗”, that is:

s1 ⊕ s2 =
√

s2
1 + s2

2, (6)

γ ∗ s1 = |γ|s1, (7)

then we can say that the space of standard deviations is an abelian additive
monoid with cancellation, such that for any two standard deviations s, t ∈ R

+,
and real α, β ∈ R:

α ∗ (s ⊕ t) = α ∗ s ⊕ α ∗ t,

α ∗ (β ∗ s) = (αβ) ∗ s,

1 ∗ s = s,

(−1) ∗ s = s,√
α2 + β2 ∗ s = α ∗ s ⊕ β ∗ s.

Examples. Here are some examples for computing with standard deviations:

1 ⊕ 1 =
√

2, 1 ⊕ 2 =
√

5, 3 ⊕ 4 = 5, 1 ⊕ 2 ⊕ 3 =
√

14.

Note that s1 ⊕ s2 ⊕ ... ⊕ sn = t is equivalent to s2
1 + ... + s2

n = t2.

Multiplication of two stochastic numbers. The product of two stochas-
tic numbers (m1; s1), (m2; s2), s1, s2 ≥ 0, is defined as:

(m1; s1) s∗ (m2; s2)
def
=
(

m1m2;
√

m2
2s1

2 + m1
2s2

2 + s2
1 s2

2

)
. (8)

Some properties of the multiplication of stochastic numbers are the following:
It is easy to show that associativity holds. If X, Y, Z are stochastic numbers

then the proof that Xs∗(Y s∗Z) = (Xs∗Y )s∗Z is a straightforward calculation.



Concerning the distributivity with addition, it can be seen that it is not
true in general. More specifically, the difference Xs∗(Y + Z) − (Xs∗Y + Xs∗Z)
has the form (0; s), s �= 0, i. e. it is a symmetric stochastic number. Anyhow,
if we denote by Ω the set of symmetric stochastic numbers and the relation
between two stochastic numbers defined by: X ∼ Y

def
= X − Y ∈ Ω, then it can

be shown that relation “∼” is an equivalence and that distributivity holds for
the corresponding equivalence classes. A ring structure can thus be obtained for
these equivalence classes.

Inclusion. Inclusion of stochastic numbers plays important roles in applica-
tions. We next discuss two relations for inclusion of stochastic numbers. The so-
called interval inclusion (briefly: i-inclusion) is defined for X1 = (m1; s1), X2 =
(m2; s2) ∈ S, by:

X1 ⊆i X2 ⇐⇒ |m2 − m1| ≤ s2 − s1. (9)

Note that addition is i-inclusion isotone, that is: X1 ⊆ X2 implies X1 + Y ⊆
X2 + Y [1]. However, it is easy to see that inverse inclusion isotonicity does not
hold, i. e. X1 + Y ⊆ X2 + Y does not imply X1 ⊆ X2. If we want that

X1 ⊆ X2 ⇐⇒ X1 + Y ⊆ X2 + Y

holds in S, then the inclusion relation “⊆s” between two stochastic numbers
should be defined by

X1 ⊆s X2 ⇐⇒ (m2 − m1)2 ≤ s2
2 − s2

1. (10)

Relation (10) will be called stochastic inclusion, briefly: s-inclusion.

Proposition 1. Addition and multiplication by scalars are (inverse) inclusion
isotone (invariant with respect to s-inclusion).

Proof. Denote X1 = (m1; s1), X2 = (m2; s2), X = (m; s) ∈ S. We shall prove
that

X1 ⊆s X2 ⇐⇒ X1 + X ⊆s X2 + X.

According to (2)

X1 + X = (m1; s1) + (m; s) = (m1 + m;
√

s2
1 + s2),

X2 + X = (m2; s2) + (m; s) = (m2 + m;
√

s2
2 + s2),

and according to (10) X1 + X ⊆s X2 + X is equivalent to

((m2 + m) − (m1 + m))2 ≤ (s2
2 + s2) − (s2

1 + s2),

that is (m2 − m1)2 ≤ s2
2 − s2

1, which means that X1 ⊆s X2.

The equivalence X1 ⊆s X2 ⇐⇒ γ ∗ X1 ⊆s γ ∗ X2 is proved similarly. �



We shall next compare relations (10) and (9). To this end we introduce an
end-point presentation.

End-point presentation. We shall next look for an end-point presentation
for stochastic inclusion. This presentation may be useful when dealing with con-
fidence intervals. The confidence interval corresponding to the stochastic number
(m; s) is [m− γs, m + γs], where γ > 0 is a chosen number (usually γ ≈ 2). For
simplicity in the sequel we assume γ = 1, which corresponds to usual compact
intervals on R.

Recall that the relation between the end-point presentation of an interval
A = [a−, a+] ⊆ R and its mid-point/radius presentation A = (a′; a′′) is given
by:

a− = a′ − a′′, a+ = a′ + a′′;

a′ = (a− + a+)/2, a′′ = (a+ − a−)/2.

Recall also the relation a+a− = a′2 − a′′2.
The i-inclusion (9) admits a simple end-point presentation, namely for A ⊆i

B condition |b′ − a′| ≤ b′′ − a′′ is presented in end-point form as b− ≤ a−,
a+ ≤ b+. We next look for an end-point presentation for the s-inclusion (10):
A ⊆s B ⇐⇒ (b′ − a′)2 ≤ b′′2 − a′′2.

The condition (b′− a′)2 ≤ b′′2 − a′′2 can be written as b′2 − b′′2 + a′2 + a′′2 ≤
2a′b′. Replacing b′2 − b′′2 = b+b−, a′ = (a− + a+)/2, a′′ = (a+ − a−)/2, etc. we
obtain: 2b+b− + a+2 + a−2 ≤ (a+ + a−)(b+ + b−). Thus the end-point condition
for s-inclusion obtains the form:

A ⊆s B ⇐⇒ a+2 + a−2 + 2b+b− ≤ (a+ + a−)(b+ + b−),

equivalently: A ⊆s B ⇐⇒ 2(b+b− − a+a−) ≤ (a+ + a−)(b+ + b− − a+ − a−).

Proposition 2. Interval inclusion (9) implies stochastic inclusion (10).
Proof. We sketch the proof for proper stochastic numbers. Assume that A =

(a′; a′′) is i-included in B = (b′; b′′), A ⊆i B, which according to (9) means
|b′ − a′| ≤ b′′ − a′′. We have to show that (10) holds true. Note first that from
(9) we have 0 ≤ a′′ ≤ b′′. Now from |b′ − a′| ≤ b′′ − a′′ we have (b′ − a′)2 ≤
(b′′ − a′′)2 ≤ (b′′ − a′′)(b′′ + a′′) = b′′2 − a′′2. �

As a consequence from Proposition 2, stochastic addition is i-inclusion iso-
tone.

3 Application: Lagrange interpolation

The goal of this section is to compare the results obtained with the theory de-
veloped in this paper, which is named Continuous Stochastic Arithmetic (CSA),
with respective results obtained with the CESTAC method and with interval
arithmetic [3], [12]–[14].



As said before, in the CESTAC method, each stochastic variable is repre-
sented by a k-tuple of gaussian random values with known mean value m and
standard deviation σ. The method also uses a special arithmetic called Discrete
Stochastic Arithmetic (DSA), which acts on the above mentioned k-tuples.

Within the scope of granular computing [15], as seen above, CSA operates on
stochastic numbers and is directly derived from operations on independent gaus-
sian random variables. Hence a stochastic number is a granule and continuous
stochastic arithmetic is a tool for computing with these granules.

Within the same point of view, in DSA which is used in the CESTAC method,
a granule is composed by a k-tuple representing k samples of the same mathemat-
ical result of an arithmetic operator implemented in floating point arithmetic.
These samples differ from each other because the data are imprecise and because
of different random rounding. The operator acting on these granules is a floating
point operator corresponding to the exact arithmetical operator which is per-
formed k times in a synchronous way with random rounding. Thus the result is
also a granule. This granule is called a discrete stochastic number. It has been
shown that DSA operating on discrete stochastic numbers possesses many prop-
erties (but not all) of real numbers; in particular the notion of stochastic zero
has been defined [12]–[14]. The CADNA library merely implements the DSA [2].

To compare the two models, a specific library has been developed which im-
plements both continuous and discrete stochastic arithmetic. The computations
are done separately. The CSA implements the mathematical rules defined in
Section 2.

The comparison has been first done on the Lagrangian interpolation method.
Let (xi, yi), i = 1, ..., n, be a set of n pairs of numbers where all xi are

different. The Lagrangian polynomial p at the point t is:

p(t) = y0l0(t) + y1l1(t) + · · · + ynln(t), li(t) =

∏
i�=j(t − xj)∏

i�=j(xi − xj)
.

We consider the situation when the values of yi are imprecise and xi are
considered exact.

For all examples presented below, we take n = 11; the exact x-values are
defined as xi = i, i = 1, ..., n, and the imprecise values yi are close to 1. This
means that in the interval case all intervals yi have a midpoint 1, whereas in the
stochastic case they have a mean value 1.

3.1 Interval approach

Assume first that some guaranteed bounds are given for the yi’s in the form of
intervals Yi, that is yi ∈ Yi, i = 1, ..., n. Then it is well-known that at each t

p(t) ∈ P (t) = l0(t) ∗ Y0 + l1(t) ∗ Y1 + · · · + ln(t) ∗ Yn.

The computation of the interval polynomial P (t) has been performed with
the Intlab implementation [5] of interval arithmetic. The maximum error on the
Yi value is ierr = 0.02. With the case Yi = [1 − ierr; 1 + ierr] = constant and



xi = i, i = 1, ..., 11, the upper and lower bounds of P are shown on Fig. 1. In
this example so-called naive interval arithmetic produces exact (sharp) bounds.
Normally, naive interval arithmetic produces pessimistic bounds. In most cases,
such sharp bounds cannot be obtained by naive interval arithmetic and more
sophisticate methods should be used.

3.2 The Continuous Stochastic Arithmetic

Corresponding computations are performed on stochastic numbers with the
CSA. As seen in the preceding sections, this approach is based on operations
defined on gaussian random variable (m; σ). It is well-known that 95% of the sam-
ples of a such variable are inside the interval [m−2σ, m+2σ]. Thus, to compare
the results with the interval approach, the value of σ is taken σ = ierr/2 = 0.01,
so that (m; σ) is equal to (1; 0.01).

The computation has been performed with our specific implementation of
CSA. The gray lower and upper curves in the Fig. 2 represent the results of
the CSA computation. Each point of the lower curve (respectively the upper
curve) is equal to m−2σ (respectively m+2σ). More specifically, a set of values
(mP (ti); σP (ti)) is obtained. Each point of the lower curve (respectively the upper
curve) on Fig. 2 is equal to mP (ti) − 2σP (ti) (respectively mP (ti) + 2σP (ti)).

3.3 The Discrete Stochastic Arithmetic

The last goal is to compare the results obtained with CSA and those obtained
with the CESTAC method with k samples, i.e. with DSA, k taking successively
the values 3, 5, 10, 30. The results obtained for each value of k are reported
in figures 3–6 in which the lower and upper curves obtained with the CSA are
shown. All figures are composed of two sub-figures. The left sub-figure shows
the curves obtained as result of the k samples. The right part compares the
computed mean value and standard deviation obtained from the k-samples to
the theoretical mean value and standard deviation obtained with CSA.

As observed from the figures, if P (ti) is the mean value of the samples ob-
tained at point ti with the DSA for the computation of P (ti), then we always
have: mP (ti)−2σP (ti) ≤ P (ti) ≤ mP (ti)+2σP (ti). Thus the numerical experiment
shows clearly that the continuous stochastic arithmetic is a good model for the
CESTAC method.

4 Computation of a polynomial

In the above section it has been shown experimentally that the theory of stochas-
tic numbers is consistent with the CESTAC method for linear computation. We
show now that it is also true in the non-linear case with the computation of the
value of a polynomial. Anyhow it must be noted that an hypothesis of the theory
is that the stochastic numbers involved in the operations are independent. This
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Fig. 3. Lagrange DSA 3 samples+CSA
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Fig. 4. Lagrange DSA 5 samples+CSA
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Fig. 5. Lagrange DSA 10 samples+CSA
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Fig. 6. Lagrange DSA 30 samples+CSA



hypothesis is clearly not fulfilled in the case of the computation of a polyno-
mial. So one can expect that the order of magnitude of the results are the same
for the theoretical and experimental result but that there may be anyhow some
differences. In fact these differences may exist but are rather small.

A great number of polynomials have been tested for which the results are
always consistent. As an example the results obtained with DSA (experimental),
CSA (theoretical) and the values provided by the CADNA software for the two
simple polynomials:

p(x) = x2 − 2x + 1,

q(x) = x3 − 3x2 + 3x − 1

are reported in Table 1 and Table 2. The values of the polynomials have been
computed for several values of x with the CADNA software implementing the
CESTAC method (i. e. with the DSA) and with the CSA. In the DSA case,
the mean value and standard deviation of the result are reported for k = 3 and
k = 20 samples. The values provided by the CADNA software are those obtained
with the DSA with k = 3 which are printed with as many significant digits as
computed by the software, i. e. according to formula (1).

When the value is non-significant then the symbol @.0 is printed.

x DSA 3 samples DSA 20 samples CSA CADNA3

(2; 0.0001) (1.000015; 0.000232) (0.999896; 0.000197) (1.000000; 0.000346) 0.100E + 001
(2; 0.001) (0.999401; 0.003352) (0.999789; 0.002116) (1.000000; 0.003464) 0.10E + 001
(2; 0.01) (0.999779; 0.018623) (1.000769; 0.020472) (1.000000; 0.034641) 0.90E + 000
(2; 0.1) (0.853213; 0.104408) (0.961586; 0.131396) (1.000000; 0.346411) @.0

(10; 0.01) (80.92840; 0.023482) (81.02938; 0.165771) (81.00000; 0.142832) 0.81E + 002
(10; 0.1) (81.58815; 1.031574) (81.58087; 1.851930) (81.00000; 1.428320) 0.8E + 002

Table 1. Values of p(x) = x2 − 2x + 1 computed with DSA and CSA

x DSA 3 samples DSA 20 samples CSA CADNA3

(2; 0.0001) (0.999796; 0.000196) (1.000075; 0.000374) (1.000000; 0.001136) 0.999E + 000
(2; 0.001) (1.001783; 0.002189) (0.999558; 0.002989) (1.000000; 0.011367) 0.10E + 001
(2; 0.01) (1.018297; 0.029464) (0.989954; 0.028460) (1.000000; 0.113670) 0.1E + 001
(2; 0.1) (1.361246; 0.503563) (1.013540; 0.313214) (1.000000; 1.136706) @.0

(10; 0.01) (728.7242; 4.028841) (729.4479; 1.780299) (729.0000; 1.783594) 0.72E + 003
(10; 0.1) (720.1993; 23.03887) (726.4653; 22.87894) (729.0000; 17.83594) 0.7E + 003

Table 2. Values of q(x) = x3 − 3x2 + 3x − 1 computed with DSA and CSA



5 Conclusion

Starting from a minimal set of empirically known facts related to stochastic
numbers, we formally deduce a number of properties and relations. We inves-
tigate the set of all stochastic numbers and show that this set possesses nice
algebraic properties. We point out to the distinct algebraic nature of the spaces
of mean-values and standard deviations. Based on the algebraic properties of the
stochastic numbers we propose a natural relation for inclusion, called stochastic
inclusion. Numerical examples based on Lagrange interpolation and polynomial
computation demonstrate the consistency between the CESTAC method and
the presented theory of stochastic numbers. This is one more justification for
the practical use of the CADNA software.
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